Congruences for higher order euler numbers 數(shù)的同余
In order to make this technique be with the topological adaptability , we propose an efficient topological technique , which is based on the change of region euler number 同時(shí)也提出了基于區(qū)域歐拉數(shù)的拓?fù)渥赃m應(yīng)處理方案,有效地解決了參數(shù)型活動(dòng)圍道方法中的拓?fù)渥赃m應(yīng)性問題。
5 . by applying our recurrence method of decreasing order , we obtain the close formulas of convoluted summations for generalized fibonacci - lucas numbers , euler numbers and genocchi numbers etc . furthermore , we obtain the computed formulae of the higher - order cumulants for a class of the lattice animal and some identities for riemann zeta functions and beta functions . 6 建立降階遞歸法,并用這種方法得到廣義fibonacci - lucas數(shù)、 euler數(shù)、 genocchi數(shù)等的多重卷積求和的封閉公式,進(jìn)而得到了若干riemannzeta函數(shù)與beta函數(shù)的恒等式以及一類latticeanimals的高階累積量的計(jì)算公式。